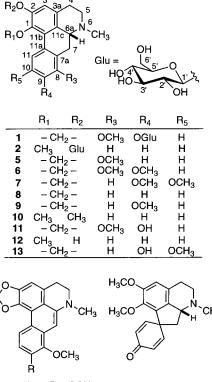
Aporphine Glycosides from *Stephania cepharantha* Seeds

Noriaki Kashiwaba,*,† Minoru Ono,† Jun Toda,‡ Hideki Suzuki,‡ and Takehiro Sano‡

Research Laboratories, Kaken Shoyaku Co., Ltd., 3-37-10, Shimorenjaku, Mitaka, Tokyo 181-0013, Japan, and Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan

Received September 27, 1999


Two new aporphine glycosides, stesakine-9- $O-\beta$ -D-glucopyranoside (1) and N-methylasimilobine-2- $O-\beta$ -D-glucopyranoside (2), were isolated from the seeds of *Stephania cepharantha* cultivated in Japan, together with 16 known alkaloids. The structures of 1 and 2 were spectroscopically determined by comparison of their ¹H and ¹³C NMR data with those of stesakine (11) and *N*-methylasimilobine (12), respectively.

The alkaloid constituents from the root tubers,¹ leaves,² and stems³ of Stephania cepharantha Hayata (Menispermaceae) cultivated in Japan were reported in previous papers. The alkaloid constituents of the seeds have been investigated by Kunitomo et al., who isolated eight alkaloids: six aporphines and two bisbenzylisoquinolines.⁴ In our investigation, two new aporphine glycosides, stesakine-9-O- β -D-glucopyranoside (1) and N-methylasimilobine-2-O- β -D-glucopyranoside (2), were obtained, together with 16 known alkaloids.⁵ This paper describes the isolation and structure elucidation of 1 and 2.

Results and Discussion

Seeds of *S. cepharantha* were successively extracted with n-hexane and MeOH. The n-hexane extract was repeatedly subjected to a combination of column chromatography, preparative TLC, and crystallization, to afford 10 known aporphine alkaloids: dehydrostephanine (3),⁴ dehydrocrebanine (**4**),⁶ stephanine (**5**),⁷ crebanine (**6**),⁷ (–)-dicentrine (7),⁸ (-)-roemerine (8),⁹ (-)-isolaureline (9),¹⁰ nuciferine (**10**),¹¹ stesakine (**11**),⁶ and *N*-methylasimilobine (**12**).¹¹ The MeOH extract was fractionated, and the alkaloid-containing fraction was purified using the same methods as for the fractionation of the *n*-hexane extract, to give stesakine-9-O- β -D-glucopyranoside (1) and N-methylasimilobine-2-O- β -D-glucopyranoside (2), as well as nine known alkaloids: four aporphines, **6**, **11**, **12**, and (–)-cassythicine (**13**);¹² one proaporphine, pronuciferine (14);¹³ and four bisbenzylisoquinolines, cepharanthine,¹⁴ cepharanoline,¹⁵ isotetrandrine,¹⁶ and berbamine.¹⁷

Glycoside 1 was obtained as an amorphous powder. The molecular formula of C₂₅H₂₉NO₉ was deduced by FABMS. The EIMS showed a molecular ion peak at m/z 487 and strong ion peaks at $m/z 325 [M - 162]^+$ and $324 [M - 163]^+$, indicating that 1 was probably an alkaloid glycoside.^{18,19} The ¹H NMR spectrum showed signals of one *N*-methyl group (δ 2.48), one methoxy group (δ 4.01), methylenedioxy protons (δ 5.98, 6.11), one singlet aromatic proton (δ 6.60), and a set of coupled aromatic protons (δ 7.71, 8.01); the spectrum was similar to that of stesakine (11), except for signals assigned to the sugar moiety. The ¹³C NMR spectrum showed 25 signals, of which five methines and one methylene were assigned to the β -glucopyranose moiety; the other 19 signals were similar to those of 11. These data suggested that 1 was an aporphine glycoside, with **11** as the aglycon and β -glucopyranose as the sugar

3 R = H, **4** $R = OCH_3$ 14

moiety. The sugar linkage was determined as follows: 1H NMR signals of the C-8 methoxy group (δ 4.01) and H-10 (δ 7.71) were shifted downfield compared with those of **11** (δ 3.89, 7.30), suggesting that the sugar moiety was linked to C-9. This assignment was supported by the results of COLOC and NOESY experiments. The optical rotation was levorotatory ([α]²⁷_D -74.5°), indicating that the absolute configuration of C-6a is $R (\beta$ -H).²⁰ Therefore, **1** was identified as stesakine-9-O- β -D-glucopyranoside.

Glycoside **2** was isolated as an amorphous powder, and the molecular formula was assigned as C₂₄H₂₉NO₇ by FABMS. In the EIMS, the molecular ion peak at m/z 443 and strong ion peaks at $m/2281 \text{ [M} - 162]^+$ and 280 [M -163]⁺ suggested that **2** should be also an alkaloid glycoside.^{17,18} The ¹H NMR spectrum exhibited signals of one *N*-methyl group (δ 2.41), one methoxy group (δ 3.93), four overlapping aromatic protons (δ 7.30–7.44), one separate aromatic proton at δ 8.70, and signals assigned to the sugar moiety. The ¹³C NMR spectrum showed 24 signals, including six signals assignable to β -glucopyranose. The ¹H and ¹³C NMR spectra, except for signals of the sugar

10.1021/np990469b CCC: \$19.00 © 2000 American Chemical Society and American Society of Pharmacognosy Published on Web 03/25/2000

^{*} To whom correspondence should be addressed. Tel.: +81-422-44-0108. Fax: +81-422-43-9744. E-mail: kasiwaba@ac.shoyaku.ac.jp. †Kaken Shoyaku Co., Ltd.

[‡] Showa Pharmaceutical University.

moiety, were closely related to those of *N*-methylasimilobine (**12**), indicating that **2** was a β -glucopyranoside of **12**. The sugar moiety was placed at C-2, because ¹H NMR signals of the C-1 methoxy group (δ 3.93) and H-3 (δ 7.39) were shifted downfield compared with those of **12** (δ 3.73, 7.01). The HMBC and NOESY experiments also supported placement of the sugar moiety at C-2. The absolute configuration was C-6a*R* (β -H) as deduced from the optical rotation ([α]²⁷_D -116.1°).²⁰ Thus, **2** was assigned as *N*-methylasimilobine-2-*O*- β -D-glucopyranoside.

The structures of known alkaloids **3–14** were confirmed by comparison of the spectroscopic data with published values and from the results of 2D NMR experiments; the other known alkaloids were identified by direct comparison of the spectroscopic data with those of authentic samples isolated previously.¹ The aporphine alkaloids, including a dehydroaporphine and aporphine glycoside, were major constituents in the seeds of *S. cepharantha*. However, aporphines **1–13** were not detectable in the root tubers, leaves, and stems.

To date, only four aporphine glycosides have been reported: (–)-asimilobine-2-O- β -D-glucoside,¹⁸ kamaline,¹⁹ floripavidine,²¹ and tuberosinone-N- β -D-glucoside.²² The aglycons of these glycosides were asimilobine derivatives and tuberosinone, respectively. Therefore, stesakine-9-O- β -D-glucopyranoside (1) represents the first aporphine glycoside having stesakine (11) as the aglycon. *N*-Methyl-asimilobine-2-O- β -D-glucopyranoside (2) was a fourth asimilobine derivative glycoside.

Experimental Section

General Experimental Procedures. Melting points were determined on a Yanagimoto hot-stage melting point apparatus without correction. Optical rotations ([α]_D) were determined on a DIP-1000 (JASCO) polarimeter. IR spectra were obtained on an FT/IR-5000 (JASCO) spectrometer using KBr disks. NMR spectra were recorded on a JNM- α 500 (JEOL) (500 MHz for ¹H and 125 MHz for ¹³C) spectrometer with tetramethylsilane as internal standard. MS were recorded on a JMS-HX110A (JEOL) spectrometer for EIMS and FABMS, and a JMS-D300 (JEOL) spectrometer was used for HRMS. EIMS were measured at 60 eV. Column chromatography was performed on Wakogel C-200 (Wako Pure Chemical Industries, Ltd.). Preparative TLC was performed on precoated Si gel 60 F₂₅₄ (0.25 mm thickness) plates (Merck).

Plant Material. *S. cepharantha* was cultivated at Yasatomachi, Ibaraki Prefecture, in Japan, and the seeds were collected in October 1980. A voucher specimen was deposited at the research laboratory of Kaken Shoyaku Co., Ltd.

Extraction and Isolation. Dried and crushed seeds of S. cepharantha (1.07 kg) were extracted exhaustively with hot n-hexane (15 L), then with hot MeOH (15 L). After concentration in vacuo, the residue from *n*-hexane was 252 g, and the MeOH residue was 60 g. The *n*-hexane residue was subjected to column chromatography using n-hexane-benzene (1:1), benzene, and MeOH-CHCl₃ (1:1) as eluents, to afford fractions of 165 g, 45 g, and 42 g, respectively. The 45-g fraction was subjected to a combination of column chromatography and crystallization to afford dehydrostephanine (3, 1.1 g).⁴ The 42-g fraction was subjected to a combination of column chromatography, preparative TLC, and crystallization, to give dehydrocrebanine (4, 28 mg),⁶ stephanine (5, 382 mg),⁷ crebanine (6, 535 mg),⁷ (–)-dicentrine (**7**, 56 mg),⁸ (–)-roemerine (**8**, 6 mg),⁹ (–)-isolaureline (**9**, 10 mg),¹⁰ nuciferine (**10**, 2 mg),¹¹ stesakine (11, 14 mg),⁶ and *N*-methylasimilobine (12, 42 mg).¹¹ The MeOH residue was dissolved in 5% HCl. After filtration of insoluble materials, the solution was washed with Et₂O. The aqueous layer was then adjusted to pH 10 with NH₄OH and extracted successively with Et₂O and CHCl₃, to afford fractions A (142 mg) and B (144 mg), respectively. Fraction A was

subjected to column chromatography using 1%, 5%, and 20% MeOH–CHCl₃ as eluents to give fractions of 55 mg, 51 mg, and 38 mg, respectively. The first fraction (55 mg) was separated by preparative TLC to yield **6** (8 mg), **11** (18 mg), cepharanthine (4 mg),¹⁴ and isotetrandrine (5 mg).¹⁶ The 51-mg fraction was also purified by preparative TLC to afford **12** (18 mg), (–)-cassythicine (**13**, 4 mg),¹² pronuciferine (**14**, 2 mg),¹³ cepharanoline (3 mg),¹⁵ and berbamine (12 mg).¹⁷ The final fraction (38 mg) was separated by preparative TLC [with EtOAc–MeOH (1:2)] to afford stesakine-9- O_{β} -D-glucopyranoside (**2**, 10 mg). Fraction **B** was subjected to column chromatography using 3%, 20%, and 50% MeOH–CHCl₃ and final purification by preparative TLC [with EtOAc–MeOH (1:2)] to afford **1** (25 mg) and **2** (30 mg).

The structures of known alkaloids **3**–**14** were confirmed by comparison of the spectroscopic data with published values and from the results of 2D NMR experiments; the other known alkaloids were identified by direct comparison of the spectroscopic data with those of authentic samples isolated previously.¹

Stesakine-9-*O***-***β***-D-glucopyranoside** (1): amorphous powder; $[\alpha]^{27}_{D}$ –74.5° (*c* 0.20, MeOH); IR (KBr) ν_{max} 3400, 1604, 1577, 1493, 1408, 1389, 1236, 1076, 1036 cm⁻¹; ¹H NMR (pyridine- d_5 , 500 MHz) δ 6.60 (s, H-3), 2.51 (ddd, J = 16.2, 3.7, 1.2 Hz, H-4), 3.12 (ddd, J = 16.2, 10.7, 5.5 Hz, H-4), 2.39 (ddd, J = 11.6, 10.7, 3.7 Hz, H-5), 2.94 (ddd, J = 11.6, 5.5, 1.2 Hz, H-5), 3.08 (dd, J = 13.7, 4.3 Hz, H-6a), 2.48 (dd, J = 13.7, 13.7 Hz, H-7), 3.91 (dd, J = 13.7, 4.3 Hz, H-7), 7.71 (d, J = 8.6Hz, H-10), 8.01 (d, J = 8.6 Hz, H-11), 5.98 (d, J = 1.2 Hz, OCH₂O), 6.11 (d, J = 1.2 Hz, OCH₂O), 2.48 (s, N-CH₃), 4.01 (s, 8-OCH₃), 5.71 (d, J = 7.3 Hz, H-1'), 4.38 (m, H-2'), 4.38 (m, H-3'), 4.35 (m, H-4'), 4.19 (ddd, J = 8.9, 5.5, 2.1 Hz, H-5'), 4.42 (dd, *J* = 11.9, 5.5 Hz, H-6'), 4.60 (dd, *J* = 11.9, 2.1 Hz, H-6'); ¹³C NMR (pyridine- d_5 , 125 MHz) δ 142.7 (s, C-1), 147.12 (s, C-2), 107.4 (d, C-3), 127.32 (s, C-3a), 29.6 (t, C-4), 53.9 (t, C-5), 62.47 (d, C-6a), 27.5 (t, C-7), 130.3 (s, C-7a), 147.07 (s, C-8), 151.2 (s, C-9), 115.4 (d, C-10), 123.8 (d, C-11), 126.3 (s, C-11a), 116.9 (s, C-11b), 127.25 (s, C-11c), 101.1 (t, OCH₂O), 44.0 (q, N-CH₃), 61.0 (q, 8-OCH₃), 102.7 (d, C-1'), 75.0 (t, C-2'), 78.8 (t, C-3'), 71.3 (t, C-4'), 79.1 (t, C-5'), 62.45 (t, C-6'); NOESY H-3-H-4; N-CH₃-H-5, -6a, -7; H-7-8-OCH₃; H-1'-H-10, -3', -5'; COLOC H-3 \rightarrow C-1, -4, -11c; H-5 \rightarrow C-3a, -6a; H-7 \rightarrow C-8, -11a, -11c; H-10 \rightarrow C-8, -11a; H-11 \rightarrow C-7a, -9; OCH₂O \rightarrow C-1, -2, N-CH₃ \rightarrow C-5, -6a; 8-OCH₃ \rightarrow C-8; H-1' \rightarrow C-9; EIMS m/z487 [M]⁺ (7), 485 (8), 325 (64), 324 (100), 308 (19), 282 (34), 280 (10), 267 (6), 264 (7), 251(7); positive FABMS m/z 488 [M + H]⁺; positive HRFABMS m/z 488.1935 [M + H]⁺ (calcd for C₂₅H₃₀NO₉, 488.1920).

N-Methylasimilobine-2-*O*-β-D-glucopyranoside (2): amorphous powder; $[\alpha]^{27}_{D}$ -116.1° (*c* 0.60, MeOH); IR (KBr) ν_{max} 3400, 1595, 1573, 1496, 1425, 1371, 1254, 1074, 1045 cm⁻¹; ¹H NMR (pyridine- d_5 , 500 MHz) δ 7.39 (s, H-3), 2.50 (dd, J =17.7, 3.4 Hz, H-4), 3.11 (ddd, J = 17.7, 11.9, 5.5 Hz, H-4), 2.23 (ddd, J = 11.9, 11.6, 3.4 Hz, H-5), 2.84 (dd, J = 11.6, 5.5 Hz, H-5), 2.96 (dd, J = 13.7, 4.0 Hz, H-6a), 2.75 (dd, J = 13.7, 13.7 Hz, H-7), 3.21 (dd, J = 13.7, 4.0 Hz, H-7), 7.38 (d, J = 7.6 Hz, H-8), 7.31 (dd, J = 7.6, 7.6 Hz, H-9), 7.42 (dd, J = 7.9, 7.6 Hz, H-10), 8.70 (d, J = 7.9 Hz, H-11), 2.41 (s, N-CH₃), 3.93 (s, 1-OCH₃), 5.64 (d, J = 7.0 Hz, H-1'), 4.38 (m, H-2'), 4.37 (m, H-3'), 4.31 (m, H-4'), 4.16 (ddd, J = 7.6, 5.5, 2.1 Hz, H-5'), 4.40 (dd, J = 11.9, 5.5 Hz, H-6'), 4.62 (dd, J = 11.9, 2.1 Hz, H-6'); ¹³C NMR (pyridine-*d*₅, 125 MHz) δ 146.1 (s, C-1), 151.2 (s, C-2), 116.1 (d, C-3), 129.6 (s, C-3a), 29.6 (t, C-4), 53.5 (t, C-5), 62.9 (d, C-6a), 35.4 (t, C-7), 137.3 (s, C-7a), 128.6 (s, C-8), 127.8 (s, C-9), 127.3 (d, C-10), 128.8 (d, C-11), 132.9 (s, C-11a), 127.2 (s, C-11b), 129.9 (s, C-11c), 44.0 (q, N-CH₃), 60.7 (q, 1-OCH₃), 102.4 (d, C-1'), 75.0 (t, C-2'), 78.9 (t, C-3'), 71.4 (t, C-4'), 79.1 (t, C-5'), 62.6 (t, C-6'); NOESY H-3-H-4; N-CH₃-H-5, -6a, -7; H-7-H-8, H-10-H-11; H-11-1-OCH₃; H-1'-H-3, -3', -5'; HMBC $H-3 \rightarrow C-1$, -4, -11c; $H-5 \rightarrow C-3a$, -6a; $H-7 \rightarrow C-11a$, -11c; H-8→ C-7, C-10, -11a; H-9 → C-7a, -11; H-10 → C-8, -11a; H-11 → C-7a, -9; 1-OCH₃ \rightarrow C-1; *N*-CH₃ \rightarrow C-5, -6a; H-1' \rightarrow C-2, -5'; EIMS m/z 443 [M]⁺ (36), 281 (73), 280 (100), 266 (50), 250 (31), 249 (29), 238 (25), 178 (18), 165 (20); positive FABMS m/z 444

 $[M + H]^+$; positive HRFABMS m/z 444.2010 $[M + H]^+$ (calcd for C₂₄H₃₀NO₇, 444.2022).

Stesakine (11): mp 160–161° (MeOH); $[\alpha]^{27}_{D}$ –89.8° (*c* 0.60, CHCl₃); IR (KBr) v_{max} 3400, 1604, 1583, 1496, 1388, 1296, 1234, 1039 cm^-1;1H NMR (pyridine- d_5 , 500 MHz) δ 6.60 (s, H-3), 2.52 (m, H-4), 3.12 (m, H-4), 2.40 (ddd, J = 12.1, 11.9, 4.0 Hz, H-5), 2.94 (ddd, J = 11.9, 5.8, 1.2 Hz, H-5), 3.11 (dd, J = 13.7, 4.3 Hz, H-6a), 2.54 (dd, J = 14.3, 13.7 Hz, H-7), 3.91 (dd, J = 13.4, 4.3 Hz, H-7), 7.30 (d, J = 8.6 Hz, H-10), 8.07 (d, J = 8.6 Hz, H-11), 6.00 (d, J = 1.2 Hz, OCH₂O), 6.11 (d, J =1.2 Hz, OCH₂O), 2.50 (s, N-CH₃), 3.89 (s, 8-OCH₃), 11.69 (br s, 9-OH); ¹³C NMR (pyridine- d_5 , 125 MHz) δ 142.4 (s, C-1), 147.1 (s, C-2), 106.9 (d, C-3), 127.3 (s, C-3a), 29.7 (t, C-4), 53.9 (t, C-5), 62.6 (d, C-6a), 27.8 (t, C-7), 130.4 (s, C-7a), 145.8 (s, C-8), 151.3 (s, C-9), 115.8 (d, C-10), 124.40 (d, C-11), 124.40 (s, C-11a), 117.6 (s, C-11b), 127.6 (s, C-11c), 101.0 (t, OCH₂O), 44.1 (q, N-CH₃), 60.5 (q, 8-OCH₃); EIMS m/z 325 [M]⁺ (67), 324 (100), 308 (68), 282 (30), 280 (34), 267 (12), 264 (17), 251 (15), 222 (14); HRMS m/z 325.1313 (calcd for C₁₉H₁₉NO₄, 325.1313).

N-Methylasimilobine (12): mp 195–197° (EtOAc); $[\alpha]^{27}$ _D -211.2° (c 0.66, CHCl₃); IR 3400, 1610, 1589, 1570, 1496, 1471, 1452, 1423, 1373, 1298, 1273, 1242, 1173, 1142 $\rm cm^{-1}; {}^1H$ NMR (pyridine- d_5 , 500 MHz) δ 7.01 (s, H-3), 2.57 (dd, J = 17.1, 3.4Hz, H-4), 3.14 (ddd, J = 17.1, 11.9, 4.9 Hz, H-4), 2.36 (ddd, J= 11.9, 11.6, 3.4 Hz, H-5), 2.90 (dd, J = 11.6, 4.9 Hz, H-5), 3.01 (dd, J = 13.7, 3.7 Hz, H-6a), 2.78 (dd, J = 13.7, 13.7 Hz, H-7), 3.22 (dd, J = 13.7, 3.7 Hz, H-7), 7.40 (d, J = 7.3 Hz, H-8), 7.32 (dd, J = 7.6, 7.3 Hz, H-9), 7.43 (dd, J = 8.2, 7.6 Hz, H-10), 8.72 (d, J = 8.2 Hz, H-11), 2.43 (s, N-CH₃), 3.73 (s, 1-OCH₃), 11.18 (br s, 2-OH); ¹³C NMR (pyridine-*d*₅, 75 MHz) δ 145.0 (s, C-1), 150.9 (s, C-2), 116.6 (d, C-3), 130.1 (s, C-3a), 29.5 (t, C-4), 53.7 (t, C-5), 63.0 (d, C-6a), 35.6 (t, C-7), 137.3 (s, C-7a), 128.7 (d, C-8), 127.7 (d, C-9), 127.4 (d, C-10), 128.3 (d, C-11), 133.2 (s, C-11a), 126.9 (s, C-11b), 127.5 (s, C-11c), 44.1 (q, N-CH₃), 60.00 (q, 1-OCH₃); EIMS m/z 281 [M]⁺ (100), 280 (69), 266 (37), 265 (37), 264 (29), 250 (39), 248 (22), 238 (19), 223 (14), 220 (14), 178 (29), 165 (19); HRMS m/z 281.1398 (calcd for C₁₈H₁₉NO₂, 281.1413).

Acknowledgment. The authors thank Mr. Y. Takase (Showa Pharmaceutical University) for the MS measurements and Mr. A. Ohzu (Kaken Shoyaku Co., Ltd.) for useful suggestions.

References and Notes

- (1) Kashiwaba, N.; Morooka, S.; Kimura, M.; Murakoshi, Y.; Ono, M.; Toda, J.; Suzuki, H.; Sano, T. Chem. Pharm. Bull. 1997, 45, 470-475
- Kashiwaba, N.; Morooka, S.; Ono, M.; Toda, J.; Suzuki, H.; Sano, T. *Chem. Pharm. Bull.* **1997**, *45*, 545–548.
 Kashiwaba, N.; Ono, M.; Toda, J.; Suzuki, H.; Sano, T. *Nat. Med.*
- 1998. 52. 541.
- (4) Kunitomo, J.; Oshikata, M.; Akasu, M. Yakugaku Zasshi 1981, 101, 951-955
- (5) Copies of the original ¹H and ¹³C NMR spectra of the isolated (a) Copies of the original if and is spectra of the source of alkaloids, except 16, are obtainable from the corresponding author.
 (b) Kunitomo, J.; Murakami, Y.; Oshikata, M.; Shingu, T.; Akasu, M.; Lu, S.-T.; Chen, I.-S. *Phytochemistry* 1980, *19*, 2735–2739.
- (7) Bartley, J. P.; Baker, L. T.; Carvalho, C. F. Phytochemistry 1994, 36,
- 1327-1331. (8) Chou, C.-J.; Lin, L.-C.; Chen, K.-T.; Chen, C.-F. J. Nat. Prod. 1994, 57, 689-694.
- (9) Kunitomo, J.; Okamoto, Y.; Yuge, E.; Nagai, Y. Yakugaku Zasshi **1969**, *89*, 1691–1695
- (10) Roblot, F.; Hocquemiller, R.; Cavé, A.; Moretti, C. J. Nat. Prod. 1983, 46, 862-873.
- (11)Jackman, L. M.; Trewella, J. C.; Moniot, J. L.; Shamma, M.; Stephens, R. L.; Wenkert, E.; Leboeuf, M.; Cavé, A. J. Nat. Prod. 1979, 42, 437-449.
- (12) Cava, M. P.; Rao, K. V.; Douglas, B.; Weisbach, J. A. J. Org. Chem. **1968**, 33, 2443-2446.
- (13) Horii, Z.; Iwata, C.; Nakashita. Y. Chem. Pharm. Bull. 1978, 26, 481-483
- (14) Patra, A.; Freyer, A. J.; Guinaudeau, H.; Shamma, M.; Tantisewie, B.; Pharadai, K. *J. Nat. Prod.* **1986**, *49*, 424–427.
 (15) Tomita, M.; Sawada, T.; Kozuka, M.; Takeuchi, M.; Akasu, M.
- Yakugaku Zasshi 1969, 89, 1678-1681
- Mouris, C. J. Nat. Prod. 1981, 44, 101-103.
- Koike, L.; Marsaioli, A. J.; Rúveda, E. A.; de A. M. Reis, F.; Bick, I. R. C. *Tetrahedron Lett.* **1979**, 3765–3768.
 Likhitwitayawuid, K.; Angerhofer, C. K.; Chai, H.; Pezzuto, J. M.;
- Cordell, G. A.; Ruangrungsi, N. *J. Nat. Prod.* **1993**, *56*, 1468–1478. (19) Banerji, J.; Chatterjee, A.; Patra, A.; Bose, P.; Das, R.; Das, B.;
- Shamma, M.; Tantisewie, B. Phytochemistry 1994, 36, 1053–1056. (20)
- Shamma, M. The Isoquinoline Alkaloids: Chemistry and Pharmacology; Academic Press: New York, 1972; pp 208–210.
- (21) Phillipson, J. D.; Gray, A. I.; Askari, A. A. R.; Khalil, A. A. J. Nat. Prod. 1981, 44, 296–307.
 (22) Dayuan, Z.; Baode, W.; Baoshan, H.; Rensheng, X.; Yunping, Q.;
- Xiuzhen, C. Heterocycles 1982, 17, 345-347.

NP990469B